Hypoxia-Induced Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma Induces an Immunosuppressive Tumor Microenvironment to Promote Metastasis.
نویسندگان
چکیده
Portal vein tumor thrombosis (PVTT) is a significant risk factor for metastasis in hepatocellular carcinoma (HCC) patients and is therefore associated with poor prognosis. The presence of PVTT frequently accompanies substantial hypoxia within the tumor microenvironment, which is suggested to accelerate tumor metastasis, but it is unclear how this occurs. Recent evidence has shown that the hypoxia-inducible factor HIF-1α induces epithelial-to-mesenchymal transition (EMT) in tumor cells to facilitate metastasis. In this study, we investigated whether hypoxia-induced EMT in cancer cells also affects immune cells in the tumor microenvironment to promote immunosuppression. We found that hypoxia-induced EMT increased the expression of the CCL20 cytokine in hepatoma cells. Furthermore, coculture of monocyte-derived macrophages with hypoxic hepatoma cells revealed that the expression of indoleamine 2, 3-dioxygenase (IDO) was induced in monocyte-derived macrophages in a CCL20-dependent manner. In turn, these IDO-expressing monocyte-derived macrophages suppressed T-cell proliferation and promoted the expansion of immunosuppressive regulatory T cells. Moreover, high CCL20 expression in HCC specimens was associated with PVTT and poor patient survival. Collectively, our findings suggest that the HIF-1α/CCL20/IDO axis in hepatocellular carcinoma is important for accelerating tumor metastasis through both the induction of EMT and the establishment of an immunosuppressive tumor microenvironment, warranting further investigation into the therapeutic effects of blocking specific nodes of this signaling network.
منابع مشابه
Mesenchymal Stem Cells in Inflammation Microenvironment Accelerates Hepatocellular Carcinoma Metastasis by Inducing Epithelial-Mesenchymal Transition
In response to inflammation, mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodeling and wound healing. Tumors apply persistent mechanical and pathological stress to tissues and causes continual infiltration of MSCs. Here, we demonstrate that MSCs promote human hepatocellular carcinoma (HCC) metastasis under the influence ...
متن کاملMesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line
Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...
متن کاملHIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment
BACKGROUND The incidence and mortality rates of hepatocellular carcinoma (HCC) have steadily increased in recent years. A hypoxic microenvironment is one of the most important characteristics of solid tumors which has been shown to promote tumor metastasis, epithelial-mesenchymal transition and angiogenesis. Epithelial-mesenchymal transition and vasculogenic mimicry have been regarded as crucia...
متن کاملActivation of PI3 kinase/Akt/HIF-1α pathway contributes to hypoxia-induced epithelial-mesenchymal transition and chemoresistance in hepatocellular carcinoma.
Hypoxia is known to promote malignant progression and to induce chemoresistance in cancer. However, the exact mechanisms driving hypoxia induced malignance remain elusive. We found that with exposure to hypoxic condition, hepatocellular carcinoma (HCC) cells experienced epithelial-mesenchymal transition (EMT), with increased cell migration and inv...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 76 4 شماره
صفحات -
تاریخ انتشار 2016